Ocean Sci. Discuss., 8, 1891-1936, 2011 "5\ .
www.ocean-sci-discuss.net/8/1891/2011/ ‘GG’ Ocean Science

doi:10.5194/0sd-8-1891-2011 Discussions

© Author(s) 2011. CC Attribution 3.0 License.

An empirical stochastic model of
sea-surface temperature and surface
wind over the Southern Ocean

S. Kravtsov1, D. Kondrashovz, . Kamenkovichs, and M. Ghil®*

'University of Winsconsin-Milwaukee, USA
2University of California at Los Angeles, USA
3University of Miami, USA

*Ecole Normale Supérieure, France

Received: 1 August 2011 — Accepted: 22 August 2011 — Published: 29 August 2011
Correspondence to: S. Kravtsov (kravtsov@uwm.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

1891

OosD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern
Ocean

S. Kravtsov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

This study employs NASA’s recent satellite measurements of sea-surface temperature
(SST) and sea-level wind (SLW) with missing data filled-in by Singular Spectrum Analy-
sis (SSA), to construct empirical models that capture both intrinsic and SST-dependent
aspects of SLW variability. The model construction methodology uses a number of
algorithmic innovations that are essential in providing stable estimates of model’s prop-
agator. The best model tested herein is able to faithfully represent the time scales and
spatial patterns of anomalies associated with a number of distinct processes. These
processes range from the daily synoptic variability to interannual signals presumably
associated with oceanic or coupled dynamics. Comparing the simulations of an SLW
model forced by the observed SST anomalies with the simulations of an SLW-only
model provides preliminary evidence for the climatic behavior characterized by the
ocean driving the atmosphere in the Southern Ocean region.

1 Introduction

1.1 Motivation

This study addresses aspects of ocean—atmosphere interaction over the Southern
Ocean using measurements provided by satellite sensors. Our objective is to quan-
titatively describe and analyze co-variability of sea-surface temperature (SST) and
sea-level wind (SLW) in this region, by developing inverse stochastic models that
are derived directly from the remotely sensed data. Empirical models of potentially
SST-dependent SLW variability can help analyze the coupled climate dynamics of the
Southern Ocean, especially when combined with oceanic General Circulation Models
(GCMs).

Climate variability over the Southern Ocean is likely to be of global significance, due
to this ocean’s special role in linking the Atlantic, Pacific, and Indian basins. How-
ever, progress in understanding the dynamics of large-scale air-sea coupling over the
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Southern Ocean has been slow, largely due to the very low density of in situ mea-
surements in this region. Recently launched NASA satellites provide accurate high-
resolution global measurements of important climatic variables such as SST and SLW.
These global fields now permit the construction of empirical air-sea interaction models
for the Southern Ocean. Despite improved data coverage in the region, estimating the
propagator of the above mentioned statistical models remains an ambitious and chal-
lenging task, since (1) there are still missing data due to the presence of strong winds
or heavy rains, and (2) such a model has to have an unprecedentedly large number
of degrees of freedom, due to high-dimensional nature of global-scale air-sea interac-
tion. The model construction thus requires major algorithmic revisions and gap-free
datasets, which we develop and describe in detail below.

1.2 Background

The Southern Ocean is the region south of roughly 30°S that includes the Antarctic
Circumpolar Current (ACC), along with the branches of circulations that link it to the
Atlantic, Pacific, and Indian Oceans (Schmitz, 1996).

1.2.1 Satellite data over the Southern Ocean

Poor spatial coverage by in situ measurements in the Southern Ocean prohibits direct
comprehensive description of climate variability there. The data from NASA satellites
launched over the past decade thus provide a unique source of precise measurements
of climatically important quantities such as SST and SLW. Global coverage and fine
resolution make them extremely valuable for studying air-sea interaction in the South-
ern Ocean. In particular, the microwave-based sensor AMSR on the AQUA satellite
launched in 2002 samples SST field under clouds — an opportunity that was previously
unavailable for infrared-based SST records over the typically cloudy Southern Ocean.

Microwave-based SST products (Kummerow et al., 2000; Wentz et al., 2000) have
been utilized before to explore tropical SST variations (Hashizume et al., 2000; Chelton
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et al., 2001; Harrison and Vecchi, 2001; Vecchi and Harrison, 2002; Vecchi et al.,
2003). We will use this type of measurements in the present paper to address air-sea
interaction over the Southern Ocean.

1.2.2 Southern Ocean climate

The Southern Ocean is characterized by intense climatological westerlies that induce
strong meridional Ekman transports and drive the ACC. The modes of climate vari-
ability in the Southern Ocean differ by their time scales and spatial signatures, as
well as by specific dynamical mechanisms. Synoptic variability, with a time scale of
a few days, is comprised of extremely powerful atmospheric storms associated with
baroclinic Rossby waves passing over the region. These synoptic eddies cause large-
amplitude SST responses mainly through enhanced vertical turbulent mixing in the
oceanic boundary layer and through changes in the air-sea heat flux. An example of
such coherent patterns of wind and SST anomalies associated with synoptic variability
is shown in Fig. 1, which displays snapshots of these fields’ anomalies on 1 Decem-
ber 2002; the anomalies were computed relative to the base 16-day period of 1-16
December 2002. The pattern correlation between the SST and SLW fields over the
region shown in Fig. 1 is of about r = —0.73, which allows to reject the null hypothesis
of zero correlation in favor of the alternative of negative correlation at 0.1 % level, ac-
cording to the one-sided #-test with v = 16 degrees of freedom (the value of ¢ statistic is

t=r\ /v/(1 —-r?)~ —4.3). The number of spatial degrees of freedom within the region

of interest in the above test was estimated based on the de-correlation scale of about
1000 km.

On longer time scales, an intraseasonal mode of intrinsic atmospheric variability
is called the Southern Annular Mode (SAM). It has a pronounced zonally symmetric
component, hence its name (Thompson and Wallace, 2000; Thompson et al., 2000).
It is also known as zonal-flow vacillation (Hartmann, 1995) and consists of irregular
meridional displacements of the atmospheric jet. SAM is thought to be energized by
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higher-frequency synoptic eddies and may, in turn, modify the storm track at lower fre-
quencies (Robinson, 2000; Lorenz and Hartmann, 2001). Feldstein (2000) has argued
that SAM variability is due to linear dynamical response to stochastic forcing associated
with synoptic eddies. In contrast, Koo et al. (2002) presented a nonlinear framework
for zonal-flow vacillation, based on the paradigm of weather regimes (Reinhold and
Pierrehumbert, 1982; Legras and Ghil, 1985; Marshall and Molteni, 1993; Koo and
Ghil, 2002; Kravtsov et al., 2005a). Hall and Visbeck (2002) discussed the dynam-
ics of oceanic response to SAM-type surface-wind evolution, and reported significant
variations in SST, sea-ice extent and ACC transport associated with this variability.

Even longer-term modes of variability include the so-called semi-annual oscillation
(Van Loon, 1967, 1972; Meehl, 1991, 1998) and the Pacific—-South American (PSA)
oscillation (Mo and Ghil, 1987) often described as a tropically forced standing wave
train (Mo and White, 1985; Mo and Ghil, 1987; Karoly, 1989; Grimm and Silva Dias,
1995; Garreaud and Battisti, 1999). The PSA has also been associated with an El
Nino/Southern Oscillation (ENSO) teleconnection pattern (Kwok and Comiso, 2002)
and has signatures in the Southern Ocean’s surface air temperature, SST and sea-ice
extent; these signatures are referred to as the Antarctic Dipole (Yuan and Martinson,
2000, 2001). Finally, the Antarctic Circumpolar Wave (ACW) has an interannual time
scale and is associated with eastward-propagating signals in SST, sea-level pressure,
and sea-ice extent (White and Peterson, 1996; Jacobs and Mitchell, 1996; Peterson
and White, 1998).

1.2.3 Air-sea coupling over the Southern Ocean

Synoptic eddies and the lower-frequency SAM that dominate climate variability in the
Southern Ocean on weekly-to-intraseasonal time scales are due primarily to intrin-
sic atmospheric dynamics. Surface manifestations of these modes induce signifi-
cant oceanic response. The SST variability associated with this response affects, in
turn, the atmospheric flow. Additionally, the SLW variability may be modified, on an
intraseasonal-to-interannual and longer time scale, by SST anomalies associated with
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intrinsic oceanic or inherently coupled processes, such as the PSA and ACW.

Surface wind influences SST directly by modifying vertical turbulent heat exchange
between the two fluids (Gill, 1982; Arya, 1988) and inducing strong horizontal Ekman
transports in the oceanic mixed layer. High-frequency wind forcing also leads to signif-
icant long-term oceanic changes by affecting, among other things, the seasonal-mean
subsurface temperatures and mixed-layer depths (Kamenkovich, 2005). In addition,
surface-wind fluctuations can energize intrinsic oceanic modes, which may play an im-
portant role in the dynamics of the Southern Ocean (Wunsch, 1999; Weisse et al.,
1999; Karsten et al., 2002; Gille, 2003). The SST signatures of these modes have
structures that are different from that of a local SST response to wind forcing. These
oceanic phenomena have long intrinsic time scales and may thus lead to partial pre-
dictability of the Southern Ocean climate.

The way SLW may respond to SST anomalies is via changes in stability of the marine
atmospheric boundary layer. Air passing over a positive SST anomaly becomes more
unstable; this leads to anomalous turbulent momentum flux and amplification of the
surface wind (Arya, 1988). This effect was shown to be at work over the Eastern Tropi-
cal Pacific (Wallace et al., 1989; Liu et al., 2000; Chelton et al., 2001; Hashizume et al.,
2001) and over the Southern Ocean (O’Neill et al., 2003) on seasonal-to-interannual
time scales. Other dynamical factors may also contribute to this response at all time
scales (Hsu, 1984; Lindzen and Nigham, 1987; Mitchell and Wallace, 1992).

The SST-induced modifications of the atmospheric boundary layer may cause
changes in the free atmosphere’s circulation. The linear response is expected to be
weak, but nonlinear modes of atmospheric variability, such as SAM, may produce a
stronger effect (Koo et al., 2002; Kravtsov et al., 2006a,b). Feliks et al. (2004, 2007)
have shown, in particular, how an oceanic thermal front may induce intraseasonal vari-
ability in the overlying atmosphere, including surface-wind evolution.

To summarize, the Southern Ocean is characterized by vigorous variability on a
wide range of time scales. Air—sea interaction in the region is complex and difficult
to represent in dynamical models, as it involves a wide variety of boundary layer
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processes, as well as their coupling to intrinsic dynamics of the fluids on both sides
of the ocean—atmosphere interface. Statistically, however, these interactions may well
be described by joint variability of SLW and SST. A purely empirical model of this
co-variability, based on recent high-quality satellite observations, could provide an ac-
curate quantitative description of air-sea interaction without having to resolve explicitly
the complex chain of participating dynamical processes.

1.2.4 Empirical stochastic models of SST and SLW

Data-based inverse stochastic models used in climate dynamics generally belong to
one of the two major groups: (i) multivariate parametric models with additive, state-
independent noise, the simplest of which is the so-called linear inverse model (LIM)
(Penland, 1989, 1996; Penland and Sardeshmukh, 1995; Penland and Matrosova,
1998; Winkler et al., 2001); and (ii) nonparametric, univariate or bivariate models in-
volving state-dependent, multiplicative noise (Sura, 2003; Sura and Gille, 2003; Sura
et al., 2006; Sura and Newman, 2008; Sura and Sardeshmukh, 2008). Both types of
models can be useful in addressing various aspects of climate variability, but are very
different in terms of how they are constructed, as well as in their potential applications.

In particular, the models with multiplicative noise consider the time series of a vari-
able of interest (for example, u—component of surface wind, or SST) at a single spatial
location, and estimate state-dependent drift and diffusion parameters of the stochastic
differential equation (SDE), which presumably governs the evolution of this variable.
In order to get reliable estimates of model parameters given relatively sparse obser-
vations, as is the case for Southern Ocean winds, one may concatenate data sets
from multiple locations, which are situated far enough so that their respective time se-
ries may be assumed to be uncorrelated (Sura, 2003). The scalar SDEs so obtained
describe local features of interactions between processes evolving on different time
scales. They are particularly successful in interpreting some of the nongaussian as-
pects of both SLW (Sura, 2003; Monahan, 2004, 2006a,b) and SST (Sura et al., 2006;
Sura and Newman, 2008; Sura and Sardeshmukh, 2008) variability. The multiplicative
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noise in the above studies is attributed to random fluctuations of the drag coefficient or
air-sea heat exchange coefficient.

On the other hand, multivariate parametric models driven by additive noise are
usually constructed in the phase space of the leading empirical orthogonal functions
(EOFs) (Preisendorfer, 1988) of the field(s) of interest, thus addressing non-local as-
pects of the variability under consideration. This non-locality comes at the expense of a
fairly restrictive parametric dependency of the system’s tendency on its state. In LIMs,
for example, this dependency is assumed to be linear, while the model coefficients
and noise parameters are found by multiple linear regression (MLR). LIMs driven by
Gaussian stochastic forcing cannot model the nongaussian aspects of the observed
statistics, but more general, nonlinear empirical parametric models can. Kravtsov et
al. (2005b) developed a methodology for constructing such nonlinear empirical mod-
els, which also addresses some other weaknesses of LIMs. This methodology showed
excellent results when applied to the problems of mid-latitude variability of geopoten-
tial heights (Kondrashov et al., 2006), as well as to describing tropical SST evolution
(Kondrashov et al., 2005).

1.3 This paper

The purpose of the present paper is to construct an empirical model of SLW variabil-
ity over the Southern Ocean by using concurrent high-quality satellite measurements
of SLW and SST. Doing so requires the use of recent microwave-sensed SST fields
available after the launch of AQUA in June 2002. Since only about 5 years of such
data are available, we do not attempt to develop a closed model that would simulate by
itself long-term aspects of SLW-SST co-variability, such as ACW; this would require a
much longer data set with enough degrees of freedom to capture interannual SST sig-
nals. Instead, the quantities involving SST observations will serve as predictors in the
stochastic model of SLW evolution; the time-dependent SST anomalies themselves
will be treated as given. We will show that this model is capable of reproducing the
statistics of daily-to-intraseasonal SLW anomalies. As a brief introductory illustration of
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one of many potential uses of the empirical model constructed, we will present some
evidence for large-scale oceanic imprint onto the atmospheric variability in the South-
ern Ocean by comparing the statistics of an SLW-only empirical model with that of a
model forced by the daily history of SST anomalies.

Our statistical SST-dependent SLW model will also be able to capture some aspects
of air-sea interaction and longer-term variability when coupled to a dynamical oceanic
component. Experiments with such a coupled dynamical-statistical model will be stud-
ied in a future paper. The application of our statistical model as a component of a
hybrid coupled GCM requires that both local and non-local aspects of SLW variability
and its coupling with SST variability be comprehensively represented in the empirical
model. We will therefore build upon the methodology of Kravtsov et al. (2005b) to
construct this model, but emphasize here that substantial modifications to that model
construction technique are necessary, as detailed below.

As we have mentioned at the end of Sect. 1.1, the high-dimensional nature of basin-
scale air-sea coupling in the Southern Ocean region prohibits direct application of
Kravtsov et al. (2005b) method and requires major modifications to the model construc-
tion algorithm; these changes, when applied to gap-free satellite datasets with missing
data filled-in by M-SSA (Kondrashov and Ghil, 2006), are essential in obtaining stable
estimates of the empirical model propagator.

The rest of the paper is organized as follows. Section 2 describes the data sources,
pre-processing and gap-filling methodology, as well as the data set’s basic statistics.
Section 3 outlines general, as well as novel technical aspects of the empirical stochas-
tic model construction, with methodological details given in the appendices. The per-
formance of our empirical models is evaluated in Sect. 4, while Sect. 5 summarizes our
results and elaborates on their significance.
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2 Data, pre-processing methodology, and basic statistics
2.1 Data sources

The gridded data products used in this analysis are obtained from the Remote Sensing
Sytems website (http://www.ssmi.com). The SST data are taken from the AMSR-E
ocean data product (Version-5) for the time interval from June 2002 to February 2007
(Kawanishi et al., 2003). Missing data are due to sun glint, heavy rain, proximity of
ice edge, and winds greater than 20ms~'. The wind speed and direction at 10m
above sea level are obtained from the QuikSCAT scatterometer dataset (Liu, 2002).
The geophysical data record began on July 1999; for the analysis in this paper, we
use data for the time interval that overlaps with that of the AMSR-E dataset. Although
the scatterometer data tend to be less accurate in the presence of rain, we do not
remove such data entries, since our statistical technique is based on analyzing spatial
covariances within the fields considered; the small-scale random errors associated with
rain occurrences will thus be effectively filtered out.

Both gridded data sets are available on a 0.25° x 0.25° grid twice a day, on ascending
and descending paths. For our subsequent analyses, the data were averaged in space
and time to produce daily values on a 2° x 2° grid.

2.2 Filling the missing data

While recent satellite observations over the Southern Ocean do have a previously un-
precedented quality, there are still gaps in data coverage in the presence of heavy
rains or strong winds; specifically, about 40 % of the points in the SST data set and
20% in the SLW data set were missing. In order to fill these gaps in the data, we
used the methodology of Kondrashov and Ghil (2006). Their algorithm is based on
multi-channel singular spectrum analysis (M-SSA) (Ghil et al., 2002) and takes advan-
tage of both spatial and temporal correlations in the existing data to iteratively produce
estimates of missing data points, which are then used to compute a self-consistent
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spatiotemporal lag-covariance matrix; cross-validation is applied to find the optimal
window width and number of dominant M-SSA modes to fill the gaps.

The missing data have been filled-in for SLW and SST fields separately; that is,
cross-correlations between these two fields were not exploited. Since the total number
of spatial grid points exceeds the temporal length of the data set (in days) for both
SLW and SST, we utilized the “reduced-covariance” approach (Ghil et al., 2002) to
compute the spatio-temporal lag-covariance matrix. Based on the results of cross-
validation experiments, we chose the lag of 1 day and 300 M-SSA modes for filling
SLW components and the lag of 5 days and 160 M-SSA modes for SST. The domain-
averaged root-mean-square (rms) error for filled-in values is estimated to be 0.44°C for
SSTsand 1.7ms™" for SLW components.

2.3 Basic statistics
2.3.1 Filtering

We considered continuous, filled-in by M-SSA data sets of daily SST scalars and SLW
vectors on a 2 x 2° grid (65°-30° S), for the period of 1 June 2002—13 February 2007,
for a total of 1719 days. We first removed the seasonal cycle by retaining, at each grid
point, only the residual of the multiple linear regression of the original, unfiltered time
series onto a ten-variable “seasonal cycle” time series. The latter time series had the
form (sin(27mt/365), cos(2mnt /365)), where time t is measured in days and changes
fromt=0tot=1718, while n = 1, 2, 3, 4, 5. The filtered versions of the original SST
and SLW time series were then also linearly detrended to get rid of secular variability,
since our statistical models are assumed to be stationary.

2.3.2 Low-order moments

Figure 2 shows a few of low-order moments of the filtered anomalies so obtained. The
time-mean wind is plotted in panel (a), with the wind speed given by color shading,
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and the direction of the wind by arrows. The winds are predominantly westerly, as
expected, and their spatial pattern represents a mid-latitude jet, whose axis is located
at about 50° S between South America and Australia, and at about 55° S elsewhere; the
strength of the jet in the latter region is somewhat weaker, with the exception of even
weaker time-mean winds just east of South America. The standard deviation of the
wind speed shown in panel (b) is fairly uniform throughout the Southern Ocean, with
the most intense variability south of the stronger portion of the jet, and the weakest
variance at the northern edge of the Southern Ocean. Modern data sets thus indicate
that, at the 2° x 2° resolution used here, the “furious fifties” are much more intense than
the “roaring forties” of sailing days. Moreover, at this resolution and on a 5-yr average,
winds off Cape Horn or the Cape of Good Hope are not particularly strong, although
their standard deviation is maximal off Cape Horn and above the Agulhas Current, east
and south of the Cape of Good Hope.

Color shading in panel (c) shows the distribution of the skewness of the zonal com-
ponent of the surface wind, which is found to be negative in the majority of the basin.
Monahan (2004) explains this property of the zonal-wind anomalies in terms of a non-
linear surface drag law: according to this law, positive anomalies in v in the region
with positive time-mean zonal winds will be subjected to stronger friction than negative
anomalies, so that the resulting u-wind distribution will be negatively skewed.

The time-mean SST field (Fig. 2d) is consistent with the climatological wind (Fig. 2a)
in that the strongest SST front is co-located with the strongest zonal jet, south of Africa
and further eastward, at 40° S. This is presumably the region of the strongest ACC as
well. The north-south SST gradients elsewhere are weaker. The SST variance (not
shown) is largely uniform throughout the Southern ocean, with values around 1-2°C.

2.3.3 Principal component (PC) analysis

Prior to computing the EOFs and PCs of SLW and SST, we multiplied the time series

of these quantities at each grid point by the square root of the cosine of its latitude, to

account for the meridian convergence and get area-weighted grid-point contributions to
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the total variance of each field. The EOFs of SST and SLW were computed separately,
and we used the combined (u, v) field to compute the latter. The percentages of
variance accounted for by the first 100 EOFs of SLW are shown in Fig. 3a, b, while the
analogous plots for SST EOF are in Fig. 3c, d.

Two leading SLW EOF pairs are somewhat separated from each other and from the
rest of the modes (Fig. 3a) and together account for about 20 % of the total SLW vari-
ance (Fig. 3c). These two pairs are associated with the leading synoptic disturbances
in the “weaker jet” (160° W—80° W) and “stronger jet” region (40° W-130° E), respec-
tively; compare Fig. 2a and Fig. 4. Spatial analysis of Fig. 4a, b and ¢, d shows that
these two modes are characterized by zonal wave numbers 8 and 9, respectively. For
the SST, only two leading EOFs stand out from the rest (Fig. 3c), and account for about
12 % of the total SST variance (Fig. 3d). Both of these EOFs have a wavelike pattern
with dominant zonal wavenumbers 3-4 (Fig. 5a, b) and pronounced interannual vari-
ability (Fig. 5¢) suggesting their possible association with the ACW. In particular, if the
time scale Tof the ACW is set up by advection processes (Weisse et al., 1999), then
T =L/U, where L and U are length and velocity scales, respectively. For wavenumber-
3 patterns (Fig. 5a, b) L~6000 km; given typical advective velocities of U=10cm s,
one then ends up with the estimate 7 ~2 yr, consistent with Fig. 5c. The EOF spectrum
becomes fairly flat roughly beyond mode 40 for SLW and mode 20 for SST. The leading
100 EOFs account for about 80 % of the total variance of both fields.

Figure 6 shows integral correlation time scales T;,; of the leading 100 EOFs of SLW
in panel (a) and SST in panel (b). The quantity 7;,; was defined as T;; = z}ﬂ? le(7)|AT,
where ¢(7) is the autocorrelation of a given PC at the lag 7 (in days), and A7 =1 day. In
general, the integral correlation time scale of the trailing modes is shorter than that of
the leading modes, for both the SLW and SST PCs, although the dependence of 7;,; on
the mode number is not monotonic. The leading EOF pairs of SLW have time scales of
about 5.5 and 4 days, respectively, while the leading EOF pair of SST is characterized
by T;.: = 60 days. The latter estimate is an order of magnitude longer than the maximum
Tt of the SLW EOFs, which is of about 7 days. Hasselmann (1976) introduced a null
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hypothesis for low-frequency variability SST anomalies, which involved integration of
fast and essentially random air-sea heat fluxes by an ocean mixed layer. The fast
random heat flux forcing was associated with SLW variability, while the longer time
scale of SST anomalies arose due to ocean mixed layer’s thermal inertia. We argue
that leading SST modes are not consistent with this null hypothesis for two reasons:
(i) the Hasselmann mechanism is local, implying positive spatial correlations between
SLW and SST patterns, whereas the patterns in Figs. 4 and 5a, b are not so correlated;
and (ii) the interannual time scales of the leading SST modes (Fig. 5c) are longer than
those associated with mixed layer thermal inertia. We thus conjecture that the leading
SST modes arise from intrinsic ocean dynamics.

In fact, the arguments of the latter paragraph apply to most of the SST EOFs, more
so for leading modes, and to a somewhat smaller degree for the trailing modes. The
empirical stochastic models of SLW constructed in the next section will include the de-
pendence on SST anomalies that span the subspace of their leading K EOFs, with
K =50 and K =75. Therefore, any sensitivity of the SLW variability produced by em-
pirical stochastic models to these SST anomalies should be interpreted as that caused
by SST variability, rather than vice-versa.

3 Construction of empirical stochastic models
3.1 General methodology

We construct empirical stochastic models in the phase space of M leading EOFs of
SLW, for various values of M(10-100), following the general methodology of Kravtsov
et al. (2005b). In order to do so, we first form daily tendencies of N leading PCs of
SLW: the tendency at day n, for example, is approximated as the difference between
the value of a given PC at day n+ 1 minus the value of this PC at day n. The M time
series of tendencies so obtained represent our response variables.
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We will consider several versions of the empirical models. In the simplest, linear
case, the main level of the empirical model is obtained by multiple linear regression
(MLR) of each response variable onto M leading PCs of SLW, resulting in an equation
of the form

X" _x"=B.x"+r", (1)

where x is an M-component vector of the leading PCs, B is an M x M matrix of the
regression coefficients, while r is the vector of Mresidual time series uncorrelated with
each of the predictor variables; as before, n is the time index (in days). If we model r
as vector-noise dw that is white in time, but spatially correlated, then the formulation
of Eq. (1) is a so-called linear inverse model (LIM) of SLW variability. The spatial
correlation refers to that between the different components of the residual time series in
r (and dw). Given random realizations of the forcing dw, the LIM (1) can be integrated
to produce surrogate time series of the M leading PCs of SLW, which can then be
translated into variable SLW patterns in physical space by summing the SLW EOFs
multiplied by the value of the corresponding surrogate PC at a given time. The statistics
of such surrogate SLW realizations can then be compared to that of the observed
anomalies to judge the performance of the LIM.

Kravtsov et al. (2005b) introduced several improvements to the LIM (1). In particular,
it often happens that the autocorrelation of the residuals at nonzero lags is not negligi-
ble. In order to address this problem, Kravtsov et al. (2005b) proposed to construct an
additional level of the inverse model; at this level, the tendencies of the main-level resid-
uals are modeled as a linear function of the extended state vector [x”; r"], consisting
of the M original PCs, plus M first-level residuals:

r"—r" =By X" "+ 2)

This exercise produces M second-level residuals: if the latter are not white in time, their
tendencies can in turn be modeled as a linear function of the extended state vector
consisting now of the M original PCs, M first-level residuals, as well as M second-level
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residuals. Additional levels can be added in the same way until the residual time series
becomes white in time. Note that this procedure is different from merely modeling
the main-level residual as colored noise, since it also takes into account any hidden
dependency of the residual tendencies on the main-level PC predictors.

Another modification, which proved useful in modeling tropical SST evolution in Kon-
drashov et al. (2005), consisted of the inclusion of an explicit seasonal cycle. Despite
our having removed the explicit seasonal cycle from the SLW fields prior to construct-
ing our empirical stochastic model, the parameters of this model may still have some
seasonal dependence. Kondrashov et al. (2005) found that the optimal way to incor-
porate such dependence is two include, at the main level of the model, two additional
predictors, namely sin(2mt/365) and cos(2nt/365). The remainder of the procedure
is unaltered, and the construction of the additional levels of the empirical stochastic
models proceeds as described above.

Finally, the most significant modification of LIM methodology in Kravisov et
al. (2005b) was to consider nonlinear combinations of basic predictors. For exam-
ple, one can include, in addition to M predictor variables (PC-1-PC-M), all possible
quadratic combinations of PCs: the product of PC-1 with all of PC-1-PC-M, plus the
product of PC-2 with PC-2—PC-M, and so on. Using index notations for vectors, matri-
ces, and tensors, and assuming implicit summation over repeating indices, the modified
main-level equation can be written as
(7+1
!

X —xl’.7=a,/kx7x;(’+b,-/-x7+c,-+rl,”. (3)
The coefficients of such a regression model are also found by the MLR procedure; how-
ever, since this procedure now employs an extended vector of predictor variables and
their quadratic combinations, it is called multiple quadratic regression (MQR). Kravtsov
et al. (2005b) argued that it is best to restrict the nonlinear modifications to the main
level of the empirical model, while the construction of additional levels proceeds as
before. The main advantage of a nonlinear empirical model is that it can address non-
gaussian aspects of the observed variability. Its main disadvantage is a potentially
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much larger number of predictors: in a quadratic model based on M PCs and includ-
ing two periodic seasonal cycle variables and a constant forcing term, the number of
predictors is M x (M +1)/2+ M + 3, and so is the number of coefficients that need
to be determined by the regression procedure for each of the M response variables.
Kravtsov et al. (2005b) argued that this problem may be efficiently addressed by a
variety of regularization procedures that allow one to avoid overfitting and construct
nonlinear multi-level stochastic models with optimal predictive capabilities. We built on
this approach here to develop a novel regularization algorithm for robust estimation of
empirical model coefficients (see the appendices).

3.2 Stochastic model versions

Using the regularization methods described in Appendix A, we have constructed sev-
eral empirical model versions, which differed by the number of PCs considered, the
order of nonlinearity at the main level of the model, and the presence or absence of the
dependence on SST. All models had three levels, with levels 2 and 3 being linear. The
SLW-only models with linear and quadratic main level were obtained in the subspace
of M =10, 15, 20, 25, 30, 35, 40, 45, 50, 75, and 100 PCs, and the cubic models for
all of the above M < 40.

We found that the performance of all these model versions is very similar, for a
given M. This result argues for using the linear SLW-only model, because it has the
simplest form and the smallest number of coefficients; hence, it is more reliable and
easily implemented than nonlinear models. The SLW model with SST dependence
was based on M =100 leading PCs of the SLW field — x, and L =50 or L =75 leading
PCs of the SST field — y The main level of the SST-dependent SLW model included
linear dependence on SLW and SST PCs, the cross-product of each SLW PC with
each SST PC, constant forcing term, and two seasonal cycle variables; no quadratic
combinations of SLW PCs or SST PCs were used as predictors:

n+1 n_ 5. yNyn X N Y
X; —xl._a,jkxjyk+b..x.+b

X LY, +cisin(2mt, /365) + c; cos(2mt, /365)+c; + 1. (4)
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4 Performance of empirical stochastic models
4.1 Simulation procedure

Empirical models constructed using the methodology described in the previous section
and the appendices were used to produce 100 surrogate simulations of SLW variability,
each of these simulations being 1719-day long. Despite the regularization applied
when constructing regression models, a few of the simulations using nonlinear models
exhibited instability. In order to avoid such situations altogether, we have used the
following procedure (Kravtsov et al., 2005b).

The models were integrated in ten-day chunks. The first chunk was started from
random initial states. If at any time during this ten-day period the absolute value of
any of the variables ended up outside their range (the latter ranges determined based
on the values obtained for the training, model-construction period), then this ten-day
simulation was discarded and restarted from another random state. The procedure was
repeated as many times as necessary until a ten-day simulation with the values of all
variables within the specified range was obtained. The final state from this simulation
was then used to initialize the next ten-day simulation, for which the ranges of the
variables were in turn monitored as before, and so on.

The threshold value for the PCs was computed as the observed maximum of the ab-
solute value, over all the PCs and during the whole observational interval; the threshold
values for the second and third-level variables were computed in the same way using
“observed values” of these quantities. We kept track of the number of times the thresh-
old condition above was violated, during each of 1719-day surrogate simulations. Ta-
ble 1 lists the average values of this number for the simulations using linear, quadratic,
and cubic SLW-only models. The average is computed over 100 available realizations
of each empirical model.

In general, the number of initial-state resets is small, on the order of 10-20 resets
during 1719-day-long simulation. Note that the resets do not always reflect instability —
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our linear model is, for example, always stable, in agreement with LIM theory (Penland,
1989, 1996; Penland and Ghil, 1993), but it still produces the values that exceed cho-
sen thresholds from time to time. On the other hand, the cubic model for M = 35 and
40 does run out of control and may produce unbounded realizations of the simulated
fields. Finally, the models that include SST forcing are not listed in Table 1, because
they never produce realizations that exceed the threshold values. This fact suggests
that coupling with SST is important for properly modeling SLW variability (see also
Sect. 4.3).

4.2 Daily-to-monthly aspects of SLW variability

We illustrate the performance of the empirical models by examining first local aspects
of the simulated SLW variability. Figure 7 shows probability density function (PDF; left
panels) and autocorrelation function (ACF; right panels) of the observed and simulated
zonal velocity anomalies at 120° W and 55° S — in the middle of an intense-jet region
(see Fig. 2); the correspondence at other locations is qualitatively and quantitatively
analogous. The heavy solid line in all the plots shows the observed PDF or ACF,
while the dashed lines mark the 95 % spread in these quantities obtained from 100
realizations of the quadratic SLW model. The four top-to-bottom rows of Fig. 7 display
the results from the empirical model based on M = 10, 30, 50, and 100 SLW PCs,
respectively.

The empirical model of 10 leading PC components of SLW (upper row) produces
a time series with a substantially smaller variance of the wind at the given location,
while the time scale of SLW anomalies there is overestimated. Both of these results
are to be expected, since the leading SLW EOFs account for a limited fraction of total
variance (Fig. 3) and are generally characterized by the longest time scales (Fig. 6). In-
cluding progressively more components into the empirical model achieves continuous
improvement of these two characteristics of SLW variability, with the 100-component
model capturing quite well both the variance and the time scale of SLW anomalies.
None of the model versions, however, captures the observed negative skewness of the

1909

OosD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern
Ocean

S. Kravtsov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| II I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

zonal-velocity distribution. In fact, the quadratic model PDFs are essentially Gaussian
and very similar to the ones obtained using simulations of the cubic and linear models
(not shown).

We have tried a number of ways to better capture the skewness of the zonal-wind
anomalies in our empirical models. These attempts included choosing a different EOF
basis, which arranged the SLW patterns so that each of them would capture a signifi-
cant fraction of variance, while having maximally skewed distribution, as well as blend-
ing our multi-level model methodology with the multiplicative-noise techniques of Sura
and collaborators (see Sect. 1.2), but still failed to reproduce the negative skewness of
the zonal-wind anomalies. We think that the reason for this failure is that the dynamics
behind this negative skewness is essentially local, as it involves the effectively larger
surface drag for positive u-wind anomalies in the region of the positive time-mean u-
wind (Monahan, 2004). Considering the anomalies in the EOF basis does not optimally
represent such local dynamics: Each of the PCs turns out to possess skewness val-
ues smaller than the typical skewness of the zonal wind at a certain grid point, and
this skewness is identified by the regression procedure as negligible; hence, this non-
Gaussian aspect of zonal-wind behavior is not properly represented in our empirical
models. Non-local dynamics, though, are well represented in our statistical models of
SLW evolution, as we will see in Sect. 4.3.

The correspondence between the observed and simulated statistics for meridional
SLW components is similar or better than that in Fig. 7 (not shown), since the merid-
ional wind distribution is generally more gaussian. Similar results are also obtained
for other locations in the Southern Ocean (not shown). These local results are es-
sentially indistinguishable between all versions of the empirical models including the
SST-dependent version, given the number of SLW PCs considered.

4.3 SST effects on SLW evolution

We show here some preliminary evidence for the substantial oceanic imprint onto
Southern Ocean’s SLW variability; this oceanic effect is a necessary condition for the
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existence of active ocean—atmosphere coupling there. In order to do so, we have
computed ensemble-averaged evolution of the SLW anomalies for a 100-member en-
semble using the empirical stochastic model forced by the history of the observed SST
anomalies, as well as this evolution for the SLW-only stochastic model. We then com-
puted the standard deviation of the ensemble-averaged wind speed for both cases, at
each grid point: the results of this computation for the SST-dependent SLW model are
shown in Fig. 8. The standard deviation in the SST-dependent case is much larger
(by a factor of 5-10), at all grid points, than that in the SLW-only case (not shown),
and exhibits a distinctive large-scale spatial pattern, suggesting this SLW variability is
forced by long-term, ocean-induced SST anomalies. We plan to address this intriguing
behavior in a future paper (see Sect. 5).

In summary, the model constructed in the phase space of 100 leading EOFs of
SLW and including, in addition, linear and bilinear interactions with SST anomalies
restricted to the subspace of 75 leading EOFs of SST, as well as the seasonal effects,
is stationary and captures several local and non-local aspects of SLW evolution, on
all time scales. We plan to use this model as the atmospheric component of a hybrid
coupled model in which the oceanic component will be a state-of-the-art GCM (see
Sect. 5).

5 Summary and discussion

We have analyzed five years of remotely sensed data sets of sea-surface temperature
(SST) and sea-level wind (SLW) over the Southern Ocean; the microwave sensors
installed on recently launched NASA satellites provide an unprecedented quantity and
quality of observations in the region. The missing data due to heavy rains or cloud
coverage has been filled-in by singular spectrum analysis (SSA). The main technical
outcome of this investigation is the construction of a statistical, stochastically forced
model of SLW over the Southern Ocean; the model construction algorithm uses a
number of essential innovations required to obtained robust estimates of the model’s
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propagator. This model captures detailed features of SLW variability on a wide range
of time scales, from daily to interannual, and spatial scales spanning the range from
the atmospheric Rossby radius to the basin scale. The model also accounts for ocean—
atmosphere coupling via dependence of SLW equations on the SST anomalies.

The model’s potential in helping to interpret observed evolution of Southern Ocean’s
climatic variables is briefly illustrated by identifying substantial oceanic imprint onto
SLW variability, which may be indicative of possible coupled ocean—atmosphere effects
in the Southern Ocean: ensemble averaging over 100 simulation of the statistical model
forced by the observed SST anomalies reveals variability of a large magnitude and
distinctive spatial pattern. The analogous ensemble average based on simulations of
the SLW-only model is characterized by a very small magnitude and a lack of spatial
coherence.

The construction of the above statistical models is rooted in the empirical method-
ology of Kravtsov et al. (2005b) and Kondrashov et al. (2005, 2006); however, the
model construction algorithm is substantially modified and improved here in a number
of ways that help choose the optimal model structure (see the appendices). These
modifications make Kravtsov et al. (2005b) technique, previously used to identify low-
dimensional behavior within high-dimensional noisy data, applicable to the analysis of
the phenomena involving intermediate number of degrees of freedom. In particular, the
most comprehensive statistical model operates in the subspace spanned by 100 lead-
ing empirical orthogonal functions (EOFs) of the daily SLW over the Southern Ocean,
thus modeling the evolution of 100 corresponding principal components (PCs); the
seasonal cycle was removed from all fields prior to performing the principal component
analysis.

The model equations relate the time derivative of each PC to the right-hand side
consisting of three parts: the part that depends on SLW only, the SST-dependent part,
and the variable forcing term. The first part is approximated as a linear function of all
PCs of the SLW field. The dependence on SSTs is modeled as the linear function of
the leading 75 PCs of the SST, plus bilinear terms involving the cross-product of SLW
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and SST PCs; since this part is nonlinear, the seasonally dependent forcing term is
also included. The variable forcing that drives the variability in the model is simulated
in a separate set of equations that relate the time derivative of each component of the
forcing vector to the linear function of SLW and SST PCs, as well as the forcing vector
itself, and also include the second-level variable forcing. The second-level forcing’s ten-
dency is in turn modeled linearly in a way analogous to the main-level forcing, while the
variable forcing at this last, third level of the model is approximated as spatially coher-
ent noise that is white in time. The construction of this statistical model involved a novel
multi-step regression algorithm to compute the coefficients of the model’s propagator,
as well as to determine the parameters of the noise.

We plan to use the statistical model constructed in the present study to further in-
vestigate the dynamics of ocean-atmosphere interaction over the Southern Ocean.
In particular, our current results may suggest the presence of active coupling in the
region by identifying a nontrivial SLW response to the observed SST anomalies, al-
though Bretherton and Battisti (2000) proposed alternative explanations to such find-
ings. Goodman and Marshall (1999), on the other hand, formulated a theory of
interannual-to-decadal coupled variability that is potentially applicable to the Southern
Ocean. This theory predicts the existence of coupled modes, given a certain spatial
phase relationship between SST patterns and SST-induced SLW anomalies; this phase
relationship gives rise to Ekman pumping anomalies that force and modify the oceanic
circulation and the associated SST field. It would be interesting to check whether we
can detect such a phase relationship in our statistical model.

Another very promising way to apply our empirical SLW model is to couple it to
an oceanic GCM. We plan to achieve this coupling by blending the SST-dependent
SLW model with atmospheric boundary layer model of Seager et al. (1995). The latter
model needs the specification of boundary-layer winds to compute ocean-atmosphere
heat fluxes. These winds will be supplied by the statistical model, and will also be used
to compute the atmosphere-ocean momentum flux. The ocean model forced by heat,
moisture, and momentum fluxes will predict the evolution of the SST field, which will,
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in turn, affect the future SLW anomalies. The experiments with such a hybrid coupled
GCM of the Southern Ocean regions may provide invaluable insights into the dynamics
of climate variability there.

Appendix A

PCR and PLS regression

The main regularization tool is cross-validation, in which one chooses randomly a sub-
set of the vector time series (in the analyses below, we typically consider 80 % of orig-
inal data points), applies a given regression technique, and then uses the regression
model to reconstruct the segments of the time series that were omitted in the model
identification step. The performance of the regression technique may then be assessed
according, for example, to the smallness of the differences between the regression-
based prediction and the actual values of the time series. We will use cross-validation
in a number of different ways when constructing the empirical models below.

A major problem in applying MQR or MLR based on a large number of predictors
is multi-collinearity (Press et al., 1994). This problem can be avoided by finding linear
combinations of original predictors in such a way that their time series are uncorrelated,
while each linear combination accounts for the maximum possible amount of the total
variance. A natural way to determine this modified set of predictors is to apply principal
component analysis to the original vector of predictors, and then use cross-validation
for finding the optimal number of PCs to retain in the regression; this procedure is
called the principal component regression (PCR). Note that since we construct our
empirical models in the phase space of the data set's EOFs, the predictor variables
in an LIM are already uncorrelated. On the other hand, the MQR predictors are the
original set of PCs augmented by their quadratic combinations. Therefore, applying
principal component analysis to this new multivariate data set generally produces a
different set of predictors.

1914

OosD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern
Ocean

S. Kravtsov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The PCR results for MQR based on several numbers of PCs, M = 10, 15, 20, 25, 30,
35, and 40, are displayed in Fig. 9; the values of M are shown on the abscissa of this
graph. We computed the optimal number of PCR predictors for each of the M equations
of the quadratic regression model. We thus obtained, for the model describing the evo-
lution of M leading SLW PCs, M estimates of the optimal number of PCR components.
The error bar plot in Fig. 9 shows the average value of this number over the M available
estimates, along with its standard deviation. The dependence of the optimal number
of PCR components on the number of original PCs is very well approximated by a lin-
ear fit (heavy solid line); this number is much smaller, for large M, than the maximum
possible number of variables, which is equal, for MQR, to M x (M +1)/2+ M + 3.

PCR does a fairly good job in picking the smallest set of uncorrelated predictors that
capture most of the variance. However, the choice of the PCR predictors does not
involve at all the information about how well these predictors are correlated with the
response variable. The procedure that does take into account this additional informa-
tion is called partial least-squares regression (PLS); see Abdi (2003) for a brief, but
comprehensive review. We apply PLS to the set of optimal predictors determined via
PCR cross-validation (Fig. 9), rather than to the original, much larger set of predictors.

Similarly to the PCR procedure, the leading PLS predictor is defined as a linear
combination of the original predictor time series, but in this case the quantity being
maximized is the correlation between this time series and the predictor time series.
We found that applying PLS to each response variable individually produces better
results than the matrix formulation of the PLS algorithm, which also considers linear
combinations of all response variables and finds two sets of coefficients that define the
mode of response and the mode of predictor variables that are maximally correlated
(Abdi, 2003). In the general multivariate case, the weights of the leading PLS mode
are found using Singular Value Decomposition (SVD) as the first right singular vector
of the matrix X' Y, where X and Y are the matrices whose columns are the time series
of the predictor and response variables, respectively. The right singular vectors of X'y
define the weights for the response variables; in the univariate case, the single such
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weight is naturally equal to 1.

The time series of the leading PLS mode is obtained by summing the original time
series of the predictor variables with the weights obtained as above. The signal associ-
ated with the leading PLS mode is then regressed out of both the response variable(s)
time series, and all the predictor time series; this is done, once again, by only retaining
the residual of the linear regression of each of these time series onto the time series
associated with the leading PLS mode. The above procedure is then applied to the
“reduced” response and predictor time series to obtain the next PLS mode, and so on
to obtain all the PLS modes. The optimal number of modes to retain in this procedure
is also determined by cross-validation.

The PLS cross-validation results for the main level of the quadratic models based
on M =10, 15, 20, 25, 30, 35, and 40 PCs are shown in the upper row of Fig. 10.
The error bar plot in the left panel is analogous to that in Fig. 9, and shows, in this
case, the optimal number of PLS components, which is found to be less than 10 for all
M. The error bar plot with x-symbols (solid lines) in the right panel shows the residual
variance as the percentage of the total response-variable variance; the expectation
value and the standard deviation for a given M are, once again, based on the results
of the PLS procedure applied to each of the M response variables (and, of course, the
same set of original predictors). The additional error bar plot in the same panel (dashed
line with circles) shows the same quantity based on the full MQR, which uses all of the
original response variables. Note that for M = 10, 15, and 20, only a few (definitely less
than 10) effective predictor variables found by consecutive application of the PCR and
PLS methodologies capture essentially the same amount of variance in the response
variables as the MQR based on 63, 138, and 223 variables, respectively. For M = 40,
the residual variances differ by a factor of 2, which indicates that the additional variance
“captured” by the original MQR procedure is associated with a substantial overfitting.

The additional panels in Fig. 10 show analogous results for the second (2M original
predictors) and third (3M original predictors) level of the wind-only empirical stochastic
model. The PCR pre-processing has not been applied to these levels, so that the PLS
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regularization acted directly on the original PCs and residuals. In each case, about
a dozen optimal predictors are identified, which capture essentially the same amount
of the response variance as the full MLR model for this level. Note that the residual
variances become increasingly close to 50 % for the second and third level. Since our
response variables have the form r"*'—r" and the predictors include the term r”, the
case with no prediction skill (that is, r being pure white noise) will identify the regression
coefficient multiplying r” to be equal to —1, and all other coefficients to be zero. In this
case, the residual will be exactly equal to r"”, and therefore the residual variance will
be exactly equal to the 50 % of the response-variable variance. The deviations of the
residual variance from 50 % in the fourth level of the wind-only regression model are
negligible (not shown), thus identifying the three-level empirical model to be optimal.

Appendix B

Selection of predictor variables

A few regression coefficients found by the application of PCR-and-PLS regularization,
as described in Appendix A, can be translated by trivial matrix manipulation into the
coefficients of the empirical model in the original predictor-variable basis. Many of
these coefficients are fairly small and do not contribute much to the predictive capability
of a given empirical model. We therefore fine-tuned and enhanced our regression
technique by the following procedure for the selection of the predictor variables.

This procedure was also based on subsampling of original predictor and response
variables. For a model mimicking the evolution of M original PCs of SLW (M = 10-100),
we first obtained 100 sets of regression coefficients by randomly applying PCR-and-
PLS regularization to 100 randomly sampled subsets of the full original time series,
each of which included 80 % of the original data points. The optimal number of PCR
components in the quadratic model was estimated according to the linear approxima-
tion shown in Fig. 9. The general cubic model was also constructed for M = 10—40; for
this model, we determined the optimal number of PCR components in a way analogous

1917

OosD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern
Ocean

S. Kravtsov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

to that for the quadratic model, prior to applying the PLS regularization step. No PCR
step was applied to the linear models. At the PLS step, we have used a fixed number
of 25 latent variables to define the optimal subspace for regression. This number ex-
ceeded the optimal one in Fig. 9 by at least a factor of two and thus could not result
in underfitting. The regression coefficients so obtained were then translated into the
original predictor-variable space.

If the interval between the 2nd and 97th percentile of a given regression coefficient
obtained as described above contained the value zero, we excluded the corresponding
predictor variable from consideration, thus forming a new, smaller subset of predictor
variables. This subset was in turn subsampled 100 times and subjected to PCR-and-
PLS regression to identify coefficients not significantly different from zero, and so on,
until all coefficients of the final set of predictors were found to be significant. The same
procedure was applied to the second and third level of each version of the inverse
model. The final regression coefficients in each case were found by applying the PCR-
and-PLS regularization to the fully sampled set of optimal predictors.

Table 2 lists the number of statistically significant nonzero coefficients of the three-
level inverse model of M leading PCs of SLW; the main level includes quadratic non-
linearities and a seasonal cycle. The total number of coefficients at the main level is
(M x (M +1)/2+M +3) x M, at the second level —2M?, and at the third level —3M?.
Note that the statistically significant coefficients are but a small fraction of the total
number of coefficients. For example, for M =75, the main level of the quadratic model
has only 4849 nonzero coefficients, out of a maximum possible of 219600. This means
that our regression procedure identified, on average, 4849/75~ 65 nonzero coefficients
in each of the 75 main-level equations; this number is an order of magnitude smaller
than the number of degrees of freedom Npg in the time series of the length of 1719.
If one estimates the decorrelation time scale of SLW anomalies to be 5 days, then
Npor = 1719/5 = 344 >> 65. Recall also, that the number of independent regression
coefficients we have actually computed at each level is 25, which makes the number of
coefficients/DOF comparison even more favorable.
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Table 2. The number of statistically significant coefficients of a three-level quadratic inverse An empirical model
model based on M leading PCs of SLW (see Appendix B for further details). of air-sea interaction
over the Southern
Level # of PCs # of all # of significant  (K/K) Ocean
(M) coeffs. (K) coeffs. (K;) x 100%
Level1 30 14940 2248 15 = ey i all
40 34520 3426 10
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75 219600 4849 2 Title Page |

100 515300 4660 1

Level 2 30 1800 695 39 T
50 5000 1415 28
75 11250 2834 25
100 20000 4986 25

Level 3 30 2700 393 15 g g
40 4800 528 11
50 7500 688 9 g g
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(a) Wind anomaly

120 E 160 E 160" W

Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002, com-
puted as the deviations from the average over the 16-day period of 1-16 December 2002:
(a) sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two
fields are spatially correlated, over the region shown, with the correlation coefficient of —0.73.
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Fig. 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard
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Fig. 3. Variances accounted for by the 100 leading EOF modes of (a, b) SLW and (c, d) SST;
individual and cumulative variances appear in panels (a, ¢) and (b, d), respectively.
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Fig. 4. Leading EOFs of SLW
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:(a, b) EOFs 1 and 2; (¢, d) EOFs 3 and 4.
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Fig. 5. Leading EOFs of SST: (a, b) EOFs 1 and 2; and (c) corresponding PCs (PCs 1 and 2
are shown as solid and dashed lines, respectively).

1931

osD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern
Ocean

S. Kravtsov et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

uI
| II I


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

osD

8, 1891-1936, 2011

An empirical model
of air-sea interaction
over the Southern

(a) Wind EOFs (b) SST EOFs Ocean
8 80
x S. Kravtsov et al.
7 x ]
x 60
— B i
% s i Title Page ‘
— x X Abstract Introduction
e
3 I * xx)?( XXW % x : 1 xXx XX x x %
d X ><)<>%< X AKX B A X W KK X{( s X i
2 0
0 20 40 60 80 100 0 20 40 60 80 100
Mode index Mode index g g
Fig. 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST. g g

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

uI
| II I

1932 @O


http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1891/2011/osd-8-1891-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

osD

5 0.1 II”\“ g
i 3 5 8, 1891-1936, 2011
8 0.05 o
& /’ ‘\\ i
0 - ke ..
< A= P TR An empirical model
30 of air-sea interaction
L o s over the Southern
- ,"\ 6
2 7N £ Ocean
2 0.05 ) 3
4 A\ <
a 7 N\ S. Kravtsov et al.
-30 -20 -10 0 10 20 5 10 15 20
u (m/s) Lag (days)
50 50
5 0.1 g Title Page ‘
L'O- /,’ \\ g .
Q 0.05 J N Q Abstract Introduction
A < I N —
u (m/s) DA
100
> 0.1 . g
o o\ =
& 0.05 AR 3 g g
o A\ <,I:
u (m/s) Lag (days)

Fig. 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; right
panels) of the observed and simulated zonal velocity anomalies at 120° W and 55° S. Solid lines:
the observed functions; dashed lines: 95 % spread based on SLW-only model with quadratic
main level. The four rows show the results, from top to bottom, for the models constructed in Printer-friendly Version
the subspace of 10, 30, 50, and 100 PCs of SLW, respectively.
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Fig. 8. The standard deviation of the wind speed time series obtained by taking the ensemble
average of 100 simulations of SST-dependent SLW model forced by the observed history of
SST anomalies. The model was constructed in the phase space of 100 leading EOFs of SLW.
A typical (maximum) standard deviation of analogous SLW-only model’s ensemble-mean time
series (not shown) is 0.25 (0.55) — both values are smaller than the standard deviations shown
here.
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Fig. 9. The results of PCR cross-validation for the main level of our quadratic SLW-only models.
The number on the abscissa shows how many SLW PCs are included in the model. The dashed
line denotes the total number of predictors in the equation for each PC. The error bar plot (light
solid line) shows the optimal number of PCR components, with the central value being the
average of this number over its individual estimates obtained for each PC equation, and the bar
representing the standard deviation of these estimates. The straight heavy line is the optimal
linear fit of the dependence of the PCR-optimized number of components on the number of
original variables (PCs) considered.
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Fig. 10. PLS cross-validation results for the three-level empirical model with quadratic nonlin-
earity in the main level. The error bar plots show the mean and standard deviations of each
quantity displayed computed using individual values of this quantity for each of the model equa-
tions (the number of equations is equal to the number of original PCs simulated by the empirical
model). Left panels: the optimal number of PLS components; right panels: the percentage of
variance unaccounted for by the regression; x-symbols show the results of PLS regression
using the optimal number of latent variables, while the circles display the results of standard
MQR, with all predictors considered.
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